3.488 \(\int \frac{(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=171 \[ -\frac{a^2 (8 A+6 B-3 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{a^{3/2} (2 B+3 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a (A+B) \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{d \sqrt{\cos (c+d x)}}+\frac{2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(a^(3/2)*(2*B + 3*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a^2*(8*A + 6*B - 3*C)*Sqrt[
Cos[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(A + B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x
])/(d*Sqrt[Cos[c + d*x]]) + (2*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.576854, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {3043, 2975, 2981, 2774, 216} \[ -\frac{a^2 (8 A+6 B-3 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{a^{3/2} (2 B+3 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a (A+B) \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{d \sqrt{\cos (c+d x)}}+\frac{2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(a^(3/2)*(2*B + 3*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a^2*(8*A + 6*B - 3*C)*Sqrt[
Cos[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*(A + B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x
])/(d*Sqrt[Cos[c + d*x]]) + (2*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))

Rule 3043

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C -
 B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \int \frac{(a+a \cos (c+d x))^{3/2} \left (\frac{3}{2} a (A+B)-\frac{1}{2} a (2 A-3 C) \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{3 a}\\ &=\frac{2 a (A+B) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{4 \int \frac{\sqrt{a+a \cos (c+d x)} \left (\frac{1}{4} a^2 (4 A+6 B+3 C)-\frac{1}{4} a^2 (8 A+6 B-3 C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=-\frac{a^2 (8 A+6 B-3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a (A+B) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{2} (a (2 B+3 C)) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{a^2 (8 A+6 B-3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a (A+B) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\frac{(a (2 B+3 C)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{a^{3/2} (2 B+3 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}-\frac{a^2 (8 A+6 B-3 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a (A+B) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 0.740273, size = 128, normalized size = 0.75 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (\sin \left (\frac{1}{2} (c+d x)\right ) (4 (5 A+3 B) \cos (c+d x)+4 A+3 C \cos (2 (c+d x))+3 C)+3 \sqrt{2} (2 B+3 C) \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \cos ^{\frac{3}{2}}(c+d x)\right )}{6 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*(2*B + 3*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c +
 d*x]^(3/2) + (4*A + 3*C + 4*(5*A + 3*B)*Cos[c + d*x] + 3*C*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(6*d*Cos[c +
d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.102, size = 302, normalized size = 1.8 \begin{align*} -{\frac{a}{3\,d\sin \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( -6\,B\sin \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \cos \left ( dx+c \right ) -6\,B\sin \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) -9\,C\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \cos \left ( dx+c \right ) +3\,C \left ( \cos \left ( dx+c \right ) \right ) ^{3}+10\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+6\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}-3\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}-8\,A\cos \left ( dx+c \right ) -6\,B\cos \left ( dx+c \right ) -2\,A \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x)

[Out]

-1/3/d*a*(a*(1+cos(d*x+c)))^(1/2)*(-6*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*cos(d*x+c)-6*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(
d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))-9*C*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(s
in(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*cos(d*x+c)+3*C*cos(d*x+c)^3+10*A*cos(d*x+c)^2+6*B*cos(
d*x+c)^2-3*C*cos(d*x+c)^2-8*A*cos(d*x+c)-6*B*cos(d*x+c)-2*A)/sin(d*x+c)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 2.5132, size = 2599, normalized size = 15.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/12*(3*(2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*sin
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
+ 2*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(
1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
+ 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) +
1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*C + 6*((a*arctan2((cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*
x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1
/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*
d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*(a*cos(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (a*cos(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a))*B/(cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) + 16*(3*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c
) + 1) - 5*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 2*sqrt(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c
) + 1)^5)*A/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)))/d

________________________________________________________________________________________

Fricas [A]  time = 2.57701, size = 423, normalized size = 2.47 \begin{align*} \frac{{\left (3 \, C a \cos \left (d x + c\right )^{2} + 2 \,{\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \,{\left ({\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{3} +{\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{3 \,{\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/3*((3*C*a*cos(d*x + c)^2 + 2*(5*A + 3*B)*a*cos(d*x + c) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))
*sin(d*x + c) - 3*((2*B + 3*C)*a*cos(d*x + c)^3 + (2*B + 3*C)*a*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(a*cos(d*x
+ c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)